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and aversive stimuli (23). The hypothesis can
be formulated that the floral electric field re-
inforces the effectiveness of other floral cues.
If true, an electric cue paired with a color cue
should produce an enhanced learning outcome
equivalent to that obtained with the test using
color and scent. Differential conditioning was
used to test this hypothesis. The same two green
target hues were used as in (23), but olfactory
cues were replaced with a patterned electric field
(Fig. 3C). Bees were trained to discriminate be-
tween E-flowers of hue 120° HSB (hue, satura-
tion, brightness) which offered a sucrose reward,
and E-flowers of hue 140° HSB, which provided
an aversive quinine solution (Fig. 4A). Bees
learned to discriminate between the rewarding
and aversive chargeless E-flowers either using
color information alone (n = 16) or in combi-
nation with the patterned E-field (n = 18) (Fig.
4A). When learning color on its own, discrim-
ination to 80% success (i.e., 8 out of the last 10
choices correct) took 35 T 3 visits. When com-
bined with the E-field pattern, the number of
visits required was significantly reduced to 24 T
3 (T2-sample; unequal = 2.86, P = 0.008) (Fig. 4A).
This demonstrates that the combination of two
cues, E-field and hue, enhances the bee’s ability
to discriminate.

Our results show that electric field consti-
tutes a floral cue. Contributing to a varied floral
display aimed at pollinator senses, electric fields
act to improve both speed and accuracy with
which bees learn and discriminate rewarding re-
sources. As such, electric field sensing consti-
tutes a potentially important sensory modality,
which should be considered alongside vision

and olfaction. The ubiquity of electric fields in
nature and their integration into the bees’ sen-
sory ecology suggest that E-fields play a thus
far unappreciated role in plant-insect interac-
tions. The present study raises the possibility of
reciprocal information transfer between plants
and pollinators at time scales of milliseconds
to seconds, much faster than previously de-
scribed alterations in floral scent, color, or hu-
midity (4, 18, 19). The remarkably accurate
discrimination and learning of color patterns
by bees was revealed by both laboratory and
field training experiments (19, 21–23). Sim-
ilarly, the present laboratory study reveals that
floral electric fields occur in patterns and that
they can be perceived. Hence, our study pro-
vides a framework for exploring the function
and adaptive value of the perception of weak
electric fields by bees in nature.
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Recovery of an Isolated Coral Reef
System Following Severe Disturbance
James P. Gilmour,1* Luke D. Smith,1† Andrew J. Heyward,1

Andrew H. Baird,2 Morgan S. Pratchett2

Coral reef recovery from major disturbance is hypothesized to depend on the arrival of propagules
from nearby undisturbed reefs. Therefore, reefs isolated by distance or current patterns are
thought to be highly vulnerable to catastrophic disturbance. We found that on an isolated reef
system in north Western Australia, coral cover increased from 9% to 44% within 12 years of a
coral bleaching event, despite a 94% reduction in larval supply for 6 years after the bleaching.
The initial increase in coral cover was the result of high rates of growth and survival of remnant
colonies, followed by a rapid increase in juvenile recruitment as colonies matured. We
show that isolated reefs can recover from major disturbance, and that the benefits of their isolation
from chronic anthropogenic pressures can outweigh the costs of limited connectivity.

Coral reefs are dynamic ecosystems pe-
riodically subjected to severe disturbances,
such as cyclones, from which they typ-

ically recover at scales of one to two decades
(1, 2). Today, this recovery is undermined by
increasing anthropogenic pressures leading to
global declines in coral cover (3, 4) and diver-
sity (5, 6). Understanding the global degradation
of coral reef ecosystems requires long-term data

on population and community dynamics, espe-
cially demographic processes (7–9). However,
the rarity of such data has precluded a thorough
assessment of the future of coral reef ecosystems
in the IPCC report on climate change (10, 11),
and current knowledge is mostly derived from
studies of reef degradation (9, 12) rather than reef
recovery. Here, we document the recovery of coral
assemblages at Australia’s largest oceanic reef

system, where changes in assemblage structure
and key demographic parameters were quantified
for 16 years, through a regime of disturbances
beginning with a catastrophic mass bleaching
event in 1998.

The Scott system of reefs is surrounded by
oceanic waters on the edge of Western Australia’s
continental shelf. It is more than 250 km from
the mainland and other reefs in the region, and
more than 1000 km from a major center of ur-
banization (fig. S1). There is little fishing pres-
sure at the reefs, apart from the harvesting of
sea cucumber, trochus, and shark fin by In-
donesian islanders using traditional fishing meth-
ods for more than 300 years (13, 14). Such oceanic
reef systems may provide a critical refuge for
coral reef assemblages because they are far re-
moved from most direct anthropogenic pres-
sures. Conversely, isolation and a consequent
lack of connectivity may make such systems
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more susceptible to disturbances. Without an ex-
ternal supply of recruits, it is assumed that reefs
will be very slow to recover from severe dis-
turbance (15–18). However, the sensitivity of
recovery to variation in larval supply and post-
recruitment processes has not been investigated
for a coral reef system through a full cycle of
impact and recovery.

Extreme water temperatures leading to mass
coral bleaching occurred in all regions of the
world in 1998 (19), and the Scott Reef system
was severely affected. Seawater temperatures at
Scott Reef rose rapidly during February 1998
and remained above average for the next 2 months
(fig. S2). The NOAA satellite estimate of the cu-
mulative degree heating weeks, a measure of
the severity of the temperature anomaly, was
13.3°C; this remains the most extreme temper-
ature anomaly recorded at Scott Reef (20). Cat-
astrophic mortality of corals across the entire
reef system occurred over the next 6 months

to depths of 20 m. Along permanent transects
at replicate sites across Scott Reef (13), be-
tween 80 and 90% of live coral was lost from
the reef crest (~3 m) and reef slope (~9 m),
and almost 70% from the upper reef slope (~6 m)
(fig. S3A). On the reef slope, the coral assem-
blage changed markedly and the number of
genera decreased by half (Fig. 1 and fig. S3).
The reductions in coral cover were followed
by recruitment failure to settlement tiles (21),
which were redeployed (n = 108) at the per-
manent transects on the reef slope (13). In the
years before the bleaching, the total number of
recruits was between 2600 and 5600; this had
decreased to zero a year later, clearly indicat-
ing that larvae were locally derived. For 6 years,
recruitment rates were <6% of those prior to the
disturbance (Fig. 2), and initial increases in coral
cover were driven by the growth of remnant
corals. On the basis of these rates of change,
recovery was projected to take decades. Within

12 years, however, coral cover, recruitment, ge-
neric diversity, and community structure were
again similar to the prebleaching years (Figs.
1 and 2 and fig. S3).

The decline in recruitment after the mass
mortality of corals in 1998 was caused by the
drastic reduction in local brood stock (Fig. 3) and
a negligible supply of larvae from neighboring
reefs hundreds of kilometers away (22, 23).
However, no phase shift to macroalgae was ob-
served; the substrata made available by the death
of corals was colonized by fine turfing and cor-
alline algae (Fig. 1) and not by macroalgae,
sponges, or other organisms that can exclude
and outcompete corals (24, 25). The already
high densities of herbivorous fishes also in-
creased after the loss of coral (Fig. 1), probably
in response to the changes in turfing algae (26);
this finding suggests a surplus grazing capac-
ity within the system that assisted subsequent
coral recruitment and survival (27). Consequent-
ly, a high proportion of the coral larvae were
produced locally, settled, and survived. The
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Fig. 1. Temporal dynamics in benthic communities on the reef slope at Scott Reef. Marked
declines in the cover of corals (especially Acroporidae) followed the mass coral bleaching in March
1998. There was a corresponding increase in the cover of fine turfing and coralline algae, but the cover
of sponges, macroalgae, and other benthic organisms remained low. The mean (TSE) density of
herbivorous fishes increased for several years after the mass bleaching event. Coral assemblages had
mostly recovered by 2010, despite two cyclones (2004 and 2007), an outbreak of disease (2009), and a
moderate bleaching event (2010).

Fig. 2. Stock-recruitment
relationship for corals on
the reef slope at Scott
Reef. The mass bleach-
ing in1998causedan80%
decline in coral cover (mean
percent T SE) and a 94%
decline inrecruitment (mean
number per tile T SE) of
the dominant coral taxa,
the genus Acropora, over
6 years (note axis break
for recruit density; recruit-
ment was not measured in
2007). A decade after the
mass bleaching, cover and
recruitment were similar
to or higher than before
the disturbance.
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Fig. 3. Temporal dynamics in size structure
and reproductive output of Acropora on the
reef slope at Scott Reef. The mean reproductive
output (solid red line) and SE (dashed red lines)
were calculated from the assemblage size structure
and size-specific fecundity of the most common
species, A. spicifera. In 2008, a decade after the
mass bleaching, the reproductive output was
similar to before the disturbance, coinciding with
the rapid increase in coral recruitment (Fig. 2).
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mean survival of recruits (<5 cm; n = 1281) of
branching (Acropora) and massive (Goniastrea)
corals during the recovery period (13) ranged
from 83 to 93% each year (fig. S4), which is far
higher than the <50% survival of recruits on reefs
experiencing chronic pressures (28, 29). Indeed,
the mean survival of all (n = 5333) colonies was
consistently higher than 80% each year, apart
from the lower survival (>53% year−1) of some
larger (>15 cm) branching corals at sites ex-
posed to cyclonic waves in 2007 (fig. S4). High
survival and growth resulted in rapid rates of
transition through increasing colony size classes,
with corresponding increases in brood stock and
reproductive output (13) (Fig. 3). Reproductive
output and recruitment were similar to predis-
turbance levels within a decade of the bleaching,
and 2 years later, coral cover and community
structure had also recovered.

The recovery of corals at Scott Reef after
the 1998 mass bleaching may have been even
faster if not for a series of more moderate dis-
turbances, including two cyclones, an outbreak
of disease, and a second bleaching. This demon-
strates that even coral reefs with a negligible sup-
ply of larvae from outside can recover relatively
quickly from disturbances in the absence of
chronic human pressures. Other ecosystems have
displayed a similar resilience when environmen-
tal conditions were not fundamentally altered
by human activities (30). Our results suggest
that addressing local pressures, such as pollution
and overfishing, is as important to the recovery
of coral reefs as the establishment of networks
of marine protected areas (MPAs). Managing lo-
cal pressures to promote resilience will be crit-

ical to preventing the global degradation of
coral reefs, with climate change likely to cause
additional severe disturbances in the near future.
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Influenza antiviral agents play important roles in modulating disease severity and in controlling
pandemics while vaccines are prepared, but the development of resistance to agents like the
commonly used neuraminidase inhibitor oseltamivir may limit their future utility. We report here
on a new class of specific, mechanism-based anti-influenza drugs that function through the
formation of a stabilized covalent intermediate in the influenza neuraminidase enzyme, and we
confirm this mode of action with structural and mechanistic studies. These compounds function in
cell-based assays and in animal models, with efficacies comparable to that of the neuraminidase
inhibitor zanamivir and with broad-spectrum activity against drug-resistant strains in vitro. The
similarity of their structure to that of the natural substrate and their mechanism-based design
make these attractive antiviral candidates.

The envelope of the influenza virus con-
tains two immunodominant glycoproteins,
hemagglutinin (HA) and neuraminidase

(NA), that play key roles in viral infection and
spread. HA effects attachment of the virus to the
host cell through its interaction with surface sialic

acids, thereby initiating entry. Once the virus has
replicated, the NA cleaves sialic acids from the
viral and cell surfaces, allowing the virus prog-
eny to spread to uninfected cells. On the basis of
the notion that potent and specific viral NA
inhibitors should function to reduce viral spread,
structure-based inhibitor design programs have
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