Physical sciences

Mission design at rocket speed

Planning space missions is traditionally a time-consuming and costly process. But the new Australian National Concurrent Design Facility (ANCDF), housed at UNSW’s Canberra campus, speeds things up so a mission can be planned in weeks rather than months.

Harnessing the expertise, design processes and software of the French Space Agency CNES (Centre National d’Etudes Spatiales), the UNSW team has created Australia’s first concurrent design facility.

The ANCDF allows engineers and scientists—both professionals and students—to design different parts of a mission in parallel rather than one after the other, which is the traditional approach. [continue reading…]

New coating cuts barnacle build-up to keep ships at sea longer

Footage of HMAS Canberra  available. Photos and video below.

A new corrosion-resistant coating that halved the build-up of algae and barnacles on ship hydraulic components is now being trialled on HMAS Canberra, one of the Royal Australian Navy landing helicopter dock ships.

Corrosion-resistant coating that halved the build-up of algae and barnacles.
Credit: Defence Science Technology

Researchers from Swinburne University of Technology are collaborating with experts from the Defence Materials Technology Centre, MacTaggart Scott Australia, United Surface Technologies and the Defence Science and Technology Group to advance the new technology.

[continue reading…]

Physical sciences (alone) can’t save us: we need to understand human behaviour, too.

Science is important in solving the world’s biggest problems.

But can the social sciences solve our planet’s biggest issues on their own?

Last month’s Woolworths’ and Coles’ plastic bag ban is a perfect example: environmental scientists have known for decades that plastic is harmful to the environment but changing habits at the individual level has not been simple.

Nature Sustainability’s Australian launch with (L-R) Tanya Ha, Rebekah Brown, Kath Rowley, Veena Sahajwalla and Robyn Schofield. Image credit: Melbourne Sustainable Society Institute/Claire Denby

Relying on the physical sciences alone to fix the world’s problems is futile. So the leaders of Springer Nature have decided it’s time for a journal that is broad based and cross-disciplinary. Nature Sustainability publishes research about sustainability from the natural and social sciences, as well as engineering and policy, and was launched in Australia on July 17 by Monica Contestabile, the Chief Editor of the new journal.

Academics are traditionally siloed into research areas and often forget to think about how the research will be embedded into society. Yet understanding human behaviour and how the public may respond to research can be the difference between failure and success in policy.

There is a need for academia and policy, along with the social sciences, to work together, so science can be developed with society in mind. And when these three things work together, real change can happen.

[continue reading…]

The future of electronics is chemical

We can’t cram any more processing power into silicon-based computer chips.

But a paper published in Nature overnight reveals how we can make electronic devices 10 times smaller, and use molecules to build electronic circuits instead.

Computer chip

Image credit: Brian Kostiuk/Unsplash

We’re reaching the limits of what we can do with conventional silicon semiconductors. In order for electronic components to continue getting smaller we need a new approach.

Molecular electronics, which aims to use molecules to build electronic devices, could be the answer.

But until now, scientists haven’t been able to make a stable device platform for these molecules to sit inside which could reliably connect with the molecules, exploit their ability to respond to a current, and be easily mass-produced.

An international team of researchers, including Macquarie University’s Associate Professor Koushik Venkatesan, have developed a proof of concept device which they say addresses all these issues.

Their research was published overnight in Nature.

[continue reading…]

The Women in Physics lecturer is…; Stargazing world record; and more physics in June

It gives me great pleasure to once again welcome a renowned physicist to Australia for the AIP’s annual Women in Physics lecture tour—and this year we’ve chosen Dr Ceri Brenner from the Central Laser Facility at Rutherford Appleton Laboratory, UK.

Ceri is a high-power laser plasma physicist who works alongside industry, translating her research on the fourth state of matter, into practical real-world applications in medicine, aerospace and more. She’s also a passionate science communicator who I am sure will inspire audiences around the country. More on that below.

Physics also made quite a mark on the media in the past month. Not only was rockstar physicist Brian Cox making the media rounds, but ANU also managed to achieve literally record-breaking numbers of people turning their eyes to the sky for their successful Guinness World Record attempt.

We’ll have another huge physics name down under in September. Kip Thorne has announced a string of tour dates, be sure to support the industry and grab a ticket when they go on sale on 22 June. He’ll be supported by local star of Swinburne astronomy Alan Duffy and comedian Robin Ince.

Some of Australia’s best and brightest physicists were also elected into the Australian Academy of Science Fellowship, one of the highest scientific honours in Australia. Be sure to read all about them, and head to our Facebook page to offer your congratulations. Meanwhile the next generation were representing at FameLab Australia and in the Physics Olympiad. [continue reading…]

GOING FOR GOLD (IN PHYSICS); HAVE YOUR SAY; PROFESSIONAL DEVELOPMENT; AND MORE: PHYSICS IN MAY

While some of us spent most of last month cheering on the Aussies, especially Cameron McEvoy, in the pool – there is plenty of good physics going on out of the pool as well.

Some of it will be coming to a pub near you as a part of the  Physics in the Pub event series, and there will be even more at the  AIP Congress in Perth in December. Abstract submissions are open until 15 June.

Australia produces some fantastic physicists, and that’s one of the reasons our organisation is so important. It’s great to have a solid community of physicists and physics fans to share their work and get excited about the work of others.

We recognise excellent Australian physics with our AIP medals. There are awards for physicists in a range of disciplines and at all career stages,  have a look at the list below to see if you might be eligible. Nominations close 1 June.

And we want to hear from you.

I get to write to you each month, so now we’re giving you the opportunity to talk back in our regular monthly surveys. The first one is only two questions long, so  check it out

We’re also considering whether a consolidated approach to managing the operations of the AIP could be an efficient use of members funds. Accordingly, we are seeking detailed expressions of interest to deliver AIP Operations, if you’re interested all the details are online.

Finally, I recently joined a meeting with Presidents, CEOs and other leaders of Australia’s most prominent science, technology, engineering and mathematics (STEM) organisations in Canberra, to discuss the important role that science and technology will play in Australia’s future.

As a result, we issued a statement calling for: a whole-of-government plan for science and technology; strategy to equip the future Australian workforce with STEM skills; strong investment in both basic and applied research; and creating policy informed by the best available evidence. You can read our full statement here.

Kind Regards,

Andrew Peele
President, Australian Institute of Physics
aip_president@aip.org.au

[continue reading…]

Improving rail safety in Indonesia and Australia

The sweet spot for rail repair vs efficiency

Computer models to predict how railcars will respond to different track conditions are being developed by Indonesian and Australian researchers, to improve rail safety and efficiency in both countries.

They’ve already created a successful model for passenger carriages, which has been validated against the performance of trains in Indonesia. Now the researchers are working on models for freight trains.

“For railways, it’s standard practice to measure the conditions of the track periodically,” says Dr Nithurshan Nadarajah, a research engineer at the Institute of Railway Technology at Monash University.

[continue reading…]

A 3D printed rocket engine – made in Melbourne

Monash engineers have designed, printed, and test-fired a rocket engine.

Media call 9.30 am, Monday 11 September, Woodside Innovation Centre, New Horizons Building, 20 Research Way, Monash University, Clayton

HD footage of static rocket testing and metal printers at work
Media contact: Niall Byrne, 0417-131-977, niall@scienceinpublic.com.au

The new rocket engine is a unique aerospike design which turns the traditional engine shape inside out.

Two years ago, Monash University researchers and their partners were the first in the world to print a jet engine, based on an existing engine design. That work led to Monash spin-out company Amaero winning contracts with major aerospace companies around the world.

Now a team of engineering researchers have jumped into the Space Age. They accepted a challenge from Amaero to design a rocket engine, Amaero printed their design, and the researchers test-fired it, all in just four months. Their joint achievement illustrates the potential of additive manufacturing (or 3D printing) for Australian industry.

[continue reading…]

3D printed rocket engine – backgrounder and links

Quick facts

  • A joint Monash University/Amaero team of engineers successfully designed, built, and tested a rocket engine in just four months
  • The engine is a complex multi-chamber aerospike design
  • Additively manufactured with selective laser melting on an EOS M280
  • Built from Hasteloy X; a high strength nickel based superalloy
  • Fuel: compressed natural gas (methane); oxidiser: compressed oxygen
  • Design thrust of 4kN (about 1,000 pounds), enough to hover the equivalent of five people (about 400 kg)

The 3D printed or Additive Manufactured aerospike rocket engine is the result of a collaboration between a group of Monash University engineers and Amaero Engineering, supported by Woodside Energy and Monash University.

Engineers at Amaero approached a team of Monash engineering PhD students, giving them the opportunity to create a new rocket design that could fully utilise the near limitless geometric complexity of 3D printing.

[continue reading…]

Reinventing the laser

Caring for Country in Arnhem Land
Macquarie University Eureka Prize winners

Macquarie University congratulates its winners in the 2017 Australian Museum Eureka Prizes and the winner of the Macquarie University Eureka Prize for Outstanding Early Career Researcher.

High-power diamond lasers invented at Macquarie University

High-power lasers have many potential applications: from medical imaging to manufacturing, shooting down drones or space junk, or powering deep space probes. But current laser technologies overheat at high power.

Rich Mildren and his team have developed a technique to make diamond lasers that, in theory, have extraordinary power range. Five years ago, their lasers were just a few watts in power. Now they’ve reached 400 watts, close to the limit for comparable conventional lasers.

Rich Mildren won the Defence Science and Technology Eureka Prize for Outstanding Science in Safeguarding Australia.

[continue reading…]