The early Universe was dark, filled with a hot soup of opaque particles. These condensed to form neutral hydrogen which coalesced to form the first stars in what astronomers call the Epoch of Reionisation (EoR).
“Finding the weak signal of this first light will help us understand how the early stars and galaxies formed,” says Dr Christene Lynch from ASTRO 3D, the ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions.
Dr Lynch is first author on a paper published in Publications of the Astronomical Society of Australia. She and her colleagues from Curtin University and the International Centre for Radio Astronomy Research have reduced the background noise in their observations allowing them to home in on the elusive signal.
Galaxies pollute the environment they exist in, researchers have found.
A team of astronomers led by Alex Cameron and Deanne Fisher from the ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) used a new imaging system on at the WM Keck Observatory in Hawaii to confirm that what flows into a galaxy is a lot cleaner than what flows out.
A massive explosion from a previously unknown source – 10 times more energetic than a supernova – could be the answer to a 13-billion-year-old Milky Way mystery.
New technique helps NASA’s James Webb Space Telescope
Astronomers have turned a cluster of galaxies into a gargantuan magnifying lens, using it to study another galaxy, 10.7 billion light years away, in unprecedented detail.
The first detailed cross-section of a galaxy broadly similar to the Milky Way, published today, reveals that our galaxy evolved gradually, instead of being the result of a violent mash-up. The finding throws the origin story of our home into doubt.
The galaxy, dubbed UGC 10738, turns out to have distinct ‘thick’ and ‘thin’ discs similar to those of the Milky Way. This suggests, contrary to previous theories, that such structures are not the result of a rare long-ago collision with a smaller galaxy. They appear to be the product of more peaceful change.
And that is a game-changer. It means that our spiral galaxy home isn’t the product of a freak accident. Instead, it is typical.
Sky-gazers visit the region to get kids dancing with the STARS
Astronomers, students and telescopes available for photographs. Key dates and locations:
April 29, morning: Riverside High School, 354 West Tamar Road, Launceston; Jay Duggan: 03 6327 6333 April 29, afternoon: Exeter High School, 28 Glen Ard Mohr Road, Exeter; Greg Finnigan: 03 6394 4366 April 30, morning and afternoon: Ulverstone Secondary College, 38 Leven St, Ulverstone; Kylie Waters: 03 6425 1433; 0400 126 282
Three schools in Launceston, Exeter and Ulverstone will be visited by astronomers, who will present them with powerful telescopes and show eager students how to use them to unlock the secrets of the stars.
Dr Brad Tucker, from the Centre of Excellence for All-Sky Astrophysics in 3D (ASTRO 3D) and the Australian National University, together with Mr Peter Swanton, also from ANU, will give the telescopes to Riverside, Exeter and Ulverstone high schools on April 29 and 30.
It will take until at least 2080 before women make up just one-third of Australia’s professional astronomers, an analysis published today in the journal Nature Astronomy reveals.
“Astronomers have been leaders in gender equity initiatives, but our programs are not working fast enough,” says Professor Lisa Kewley, director of the ARC Centre of Excellence for All-Sky Astrophysics in 3 Dimensions (ASTRO 3D).
Professor Lisa Kewley. Credit: ASTRO 3D
Kewley is also an ARC Laureate Fellow at the Australian National University’s Research School for Astronomy and Astrophysics. She developed workforce forward modelling that can predict the fraction of women at all levels in astronomy from 2021 to 2060, given different initiatives in hiring or retention. The models show that Australia’s university leadership need to adopt 50:50 or affirmative action hiring and introduce exit surveys and retention initiatives.
“With these initiatives we can reach one-third women in 11 years, growing to 50 per cent in 25,” she said.
Massive galaxies with extra-large extended “puffy” disks produced stars for longer than their more compact cousins, new modelling reveals.
In a paper published in the Astrophysical Journal, researchers led by Dr Anshu Gupta and Associate Professor Kim-Vy Tran from Australia’s ARC Centre of Excellence in All Sky Astrophysics in 3 Dimensions (ASTRO 3D), show that the sheer size of a galaxy influences when it stops making new stars.
The complex mechanics determining how galaxies spin, grow, cluster and die have been revealed following the release of all the data gathered during a massive seven-year Australian-led astronomy research project.
The scientists observed 13 galaxies at a time, building to a total of 3068, using a custom-built instrument called the Sydney-AAO Multi-Object Integral-Field Spectrograph (SAMI), connected to the 4-metre Anglo-Australian Telescope (AAT) at Siding Spring Observatory in New South Wales. The telescope is operated by the Australian National University.
ANU astronomer Brad Tucker showing students from Rockhampton High School how to use their powerful new telescope. Credit: ANU Media
Children in remote and regional schools will soon be visited by astronomers bearing gifts in a quest to kindle interest in the cosmos.
The scientists – drawn from the ranks of the ARC Centre of Excellence for All Sky Astrophysics in 3D (ASTRO 3D) and the Australian National University – will donate a powerful telescope and high-tech accessories to each school so classes can continue to explore the Universe long after the astronomers have left.
We are a team of science writers, science publicists, science communicators, and science editors.
We help you communicate complex ideas simply to the public, media, government, and industry.
We work on all platforms from social media, to media, pitches, publications, events and conferences.
Scientists: if you need help with your research communication;
Journalists: if you’re looking for talent for your next story; you’re in the right place.
Media and communication training
Full day hands-on workshops in small groups. Practise interviews with journalists. Find your key messages. Handle tricky questions. Learn how to ensure your research is reported accurately.
Sarah's structure of the course, specific insight and understanding of science, her contacts and common mistakes made in communication were great and furthered my skills in this area.
Anonymous - Sydney Jan 2020
Science In Public
2020-01-28T15:04:28+11:00
Anonymous - Sydney Jan 2020
Sarah's structure of the course, specific insight and understanding of science, her contacts and common mistakes made in communication were great and furthered my skills in this area.
This is one of the best science communication courses I have ever encountered. It teaches all research to think out of box and really simplify their research in lay man's language. I will highly recommend this to anyone looking to learn more about science communication.
Shwathy Ramesh
Science In Public
2020-02-24T09:29:55+11:00
Shwathy Ramesh
This is one of the best science communication courses I have ever encountered. It teaches all research to think out of box and really simplify their research in lay man's language. I will highly recommend this to anyone looking to learn more about science communication.
Sufficient time given to work one-on-one with each participant. TV, radio and newspaper given sufficient weight. Practical, informative and professional
Anonymous - Gold Coast May 2021
Science In Public
2022-09-05T12:59:42+10:00
Anonymous - Gold Coast May 2021
Sufficient time given to work one-on-one with each participant. TV, radio and newspaper given sufficient weight. Practical, informative and professional
Good mix in terms of topics covered, people invited and media coverage. This course will make me more comfortable and I believe it will improve my confidence about myself and how I talk about my work in front of media.
FEnEX CRC, December 2021
Science In Public
2022-09-05T13:01:49+10:00
FEnEX CRC, December 2021
Good mix in terms of topics covered, people invited and media coverage. This course will make me more comfortable and I believe it will improve my confidence about myself and how I talk about my work in front of media.
Sarah is an amazing instructor. She has looked after each of the participants very well. I really like her style. Thank you to all team for a valuable training session.
Seyhan Yazar, Garvan Institute of Medical Reseearch
Science In Public
2022-09-05T13:02:58+10:00
Seyhan Yazar, Garvan Institute of Medical Reseearch
Sarah is an amazing instructor. She has looked after each of the participants very well. I really like her style. Thank you to all team for a valuable training session.
Pushed me to finesse/develop a pitch, find an edge that will facilitate communicating my research findings. The real world experience/opportunity for interviews was exceptionally helpful
Megan Bater
Science In Public
2022-09-05T13:06:38+10:00
Megan Bater
Pushed me to finesse/develop a pitch, find an edge that will facilitate communicating my research findings. The real world experience/opportunity for interviews was exceptionally helpful
The day was a great balance of topics and presented in an approachable and friendly style that was very inclusive. It was a fantastic and informative session that will really help me day-to-day in the communications work I do.
Ben Westmoreland, 2022
Science In Public
2022-09-05T13:07:28+10:00
Ben Westmoreland, 2022
The day was a great balance of topics and presented in an approachable and friendly style that was very inclusive. It was a fantastic and informative session that will really help me day-to-day in the communications work I do.